
摘要:为研究顶管上穿地铁区间隧道过程中隧道受力的变化,依据徐州市区奎河综合整治工程截污主管顶推工程相关的设计及施工资料,采用GTS进行三维数值模拟分析,根据施工工况,分析对既有区间隧道的影响。结果发现,顶进过程中的推力及顶管引起的土体卸载造成区间隧道的变形,伴随顶管顶进的过程,原有区间隧道的受力及变形会越来越大,当顶管顶进一定位置时,区间隧道的受力及变形最大。计算结果表明采用顶管施工可以很好的控制隧道的变形,确保顶管施工期间地铁隧道的结构安全。
1、概述
目前,地铁项目建设如火如荼,由于缺少前期与各部门的沟通协调,地铁建设后引起的区间隧道建设占用的地下空间就会给后期施工的市政管网改造带来麻烦。随着城市版图的扩张,市政管网改造的工程越来越多,本文根据徐州市区奎河综合整治工程截污主管顶推工程对既有隧道的受力及变形的影响,为以后顶管施工上穿既有隧道的工程提供类似的经验。
2、工程概况
2.1 工程介绍
截污干管总长度约3.1km,截污干管管径为DN2000,管节长度为2m,壁厚200mm,采用预制钢筋混凝土管节,污水干管顶埋深约为5m,地铁3号线和平路站—淮塔东路站盾构区间在此管道下方,盾构隧道距离污水干管垂直距离最小为5m,盾构隧道顶覆土埋深12m。区间盾构段采用隧道内径φ5.5m,外径φ6.2m,厚350mm,环宽1.2m的管片。
2.2 工程及水文地质条件
地铁隧道以北地貌类型为冲积垅状高地,主要由黄河带来的粉砂、粉土堆积而成,标高36.0m~42.0m,两侧形成天然堤坝,高出冲积平原5m~10m;地铁隧道以南为冲积垅状高地、冲积平原交接带,浅部分布的粉土、粉砂层较薄,下部为第四系中上更新统棕红色含钙核黏土和全新统棕红、棕黄色黏土构成。
地层从上往下为(1)-1杂填土、(2)-4-2黏质粉土、(2)-3a-2黏土、(5)-3a-4黏土。地层参数见表1。
地下水类型按赋存条件分为填土、砂粉土中的孔隙水及灰岩岩溶裂隙中的裂隙岩溶水,按埋藏条件可分为上层滞水、潜水及承压水。潜水地下水水位埋深1.10m~8.30m,水位标高29.48m~39.50m,受地形起伏及地表水(勘察期间废黄河水位标高36.0m,奎河水位标高29.48m)影响较大。
3、区间隧道安全状态评估
本次影响范围内的监测点为GGC-R0160,GGC-R0170,GGJ-R0160,GGJ-R0170(GGC为隧道拱顶沉降,GGJ为隧道净空收敛);以日为节点的监测数据进行统计,根据现场情况,仅有右线监测数据,待左线监测数据足够时再进行分析。
根据现有监测数据可以看出,拱顶累计沉降量大值达到1.5mm,最大隆起2.0mm,平均每天变化速率为0.1mm/d~0.9mm/d;隧道拱顶累计沉降值及变形速率均较小,隧道处于基本稳定状态。隧道处于安全状态。
4、三维模拟数值分析
本文采用有限元软件Midas/GTS作为计算平台。土体采用摩尔—库仑准则,有限元计算模型的范围确定为79m×73m×29m,包括三号线盾构区间左右线隧道以及上穿的顶管隧道,左右线隧道长73m,顶管隧道长79m。模型上表面边界取自地表(忽略地表高差变化,取水平面),下表面边界取自隧道底部以下约10m。
数值模拟过程中,为了尽可能达到与实际相符的计算环境,需要对地层及结构进行部分简化和处理,以适应计算理论和软件,本次计算基本假定包括:
1)初始应力只考虑围岩的自重应力,忽略构造应力的影响;2)所有材料均为均质、连续、各向同性,土体水平成层分布;3)围岩按摩尔—库仑理想弹性材料考虑,隧道管片均为均质弹性材料;4)地铁隧道管片不考虑管片与管片之间的连接,只作为整体进行简化分析。
顶管施工采用单元钝化的方式进行模拟,机械荷载等效为均布荷载,施加对应构件表面。
本次模拟分析中,将顶管推进作为一个非连续的过程来研究,假设顶管机一步一步跳跃式向前推进,每次向前推进的长度为一个管节的长度(2m),在顶管机尾部衬砌拼装一次性完成,同时在掌子面上施加均布的土仓压力,大小为原始地层隧道中心位置的侧向静止土压力值,本次模拟共划分40个施工阶段,每个施工阶段按照顶推2m。
顶管机内土体开挖采用有限元软件Midas/GTS提供的单元“钝化”功能进行模拟。
4.1 内力分析
通过模型模拟计算,得到一系列结果,可以看出,随着顶管隧道的推进,盾构隧道左线的轴力在施工阶段3时(过左线隧道前28m左右)开始增加,在施工阶段27时(过左线隧道后20m左右)达到最大值,之后开始减小。右线在施工阶段6时(过左线隧道前22m左右)开始增加,在施工阶段33时(过左线隧道后32m左右)达到最大值,之后基本保持不变。左线轴力的最大变化量为3.41kN/m,右线轴力的最大变化量为3.08kN/m,说明上穿污水干管对盾构隧道管片轴力的影响较小。
左线隧道盾构管片剪力逐渐增大,右线隧道管片剪力逐渐减小,随着顶管的通过,剪力值趋于稳定。左线剪力值最大变化量为3.82kN/m,右线剪力值最大变化量为2.92kN/m。
左线隧道管片弯矩值有所增加,而右线管片弯矩略微减小。左线隧道管片弯矩值最大变化量为2.36(kN•m)/m,右线隧道管片弯矩值最大变化量为0.29(kN•m)/m。盾构隧道管片弯矩见图1。
综上,顶管的推进对左线隧道的影响相对要大,但总体来说对盾构管片的受力影响较小。
4.2 位移分析
随着顶管的推进,左线管片最先受到影响而发生变形,右线管片后发生变形。左线管片在顶管施工阶段17时(左线正上方位置),水平和垂直位移增长加快,在顶管施工阶段25时(过左线中心线16m左右),水平和垂直位移均达到最大值,之后位移减小。右线管片在顶管施工23时(右线正上方位置),水平和垂直位移增长加快,在顶管施工阶段33时(过右线中心线20m左右),水平和垂直位移均达到最大值,随后位移减小。顶管机掘进引起的隧道管片左线最大水平位移为1.25mm,最大垂直位移为1.13mm,右线最大水平位移为1.23mm,最大垂直位移为1.11mm,左右线的水平和垂直位移基本保持一致。根据城市轨道交通结构安全控制指标,隧道水平和垂直位移预警值均为5mm,数值模拟隧道位移计算结果均小于预警值。
盾构隧道管片水平方向位移见图2。
根据上面施工阶段位移的变化规律可知,在顶推过隧道时,顶管开挖对土体有一个卸载的作用,使隧道有一个向上的回弹,导致隧道变形增加,等顶管过隧道之后,上部土体完成变形,荷载又重新加到隧道上,隧道变形又会减小。
4.3 荷载—结构模型计算分析
由于顶管施工的影响,在污水干管接近隧道和穿过隧道时,会引起临近区间隧道的受力变化,隧道结构的变形受偏压作用的影响也会有一定的变化。为此,应用有限元分析软件,采用“荷载—结构模型”模拟计算顶管施工穿越区间隧道前后,既有地铁隧道结构的受力变化情况。
计算断面选择的原则是“最不利原则”,即选用与本项目位置关系最不利的断面进行计算,同时选择相邻地质钻孔中较差的地质参数进行计算分析。
拟采用的计算工况如表2所示。
顶管施工完成后,盾构隧道管片承受的弯矩和轴力值均有一定的增大,但管片配筋及裂缝宽度均能满足原设计的要求。
5、结论及建议
1)采用Midas/GTS软件模拟顶管顶推施工,顶管施工引起地铁隧道最大垂直位移和水平位移,均小于地铁安全控制指标值,满足地铁隧道变形控制要求。说明采用顶管施工可以很好的控制隧道的变形,确保施工期间地铁隧道的安全。
2)数值模拟结果中:
a.隧道的最大变形约为1.36mm,远小于安全控制指标值10mm;
b.隧道径向收敛约为1.5mm,远小于安全控制指标值12.4mm;
c.曲率半径R=(117/4)2/0.00136=629090m>15000m,满足安全控制指标;
d.盾构隧道最大变形差的一环管片(1.2m范围内)差异变形为0.27mm,其相对变曲为0.27/1200≤1/2500,满足安全控制指标;
e.根据模型云图测量影响范围,为截污干管两侧各50m范围内;
f.根据隧道变形分析得知:轨道横向高程、轨间距等均满足安全控制指标。
3)计算结果表明采用顶管施工可以很好的控制隧道的变形,确保顶管施工期间地铁隧道的结构安全。
4)采用荷载结构模型对盾构区间受力进行了分析,计算结果可以看出,盾构隧道管片承受的弯矩和轴力值均有一定的增大,但管片配筋及裂缝宽度均能满足原设计的要求。
5)为保证截污干管道施工的安全性,并尽量减小顶管施工对地铁3号线隧道结构的影响,需要对顶管施工编制严密的施工组织方案,尤其是顶管在地铁隧道上方垂直穿越施工时的影响最大。因此对顶推力的大小、顶进速度、注浆保证和地层损失、地下水位进行控制,确保顶管施工的顺利进行和对地铁隧道结构的影响最小。
6)顶管施工前应对邻近既有地铁隧道结构现状展开相关调查和分析,以掌握既有地铁隧道结构的现状情况。同时采用动态施工,加强监测,使既有隧道的变形在允许范围之内,确保地铁隧道的结构安全。
参考文献:
[1]冯海宁,龚晓南,徐曰庆.顶管施工环境影响的有限元计算分析[J].岩石力学与工程学报,2004(7):1158-1162.
[2]魏纲,余振翼,徐日庆.顶管施工中相邻垂直交叉地下管线变形的三维有限元分析[J].岩石力学与工程学报,2004(15):2523-2527.
[3]余振翼,魏纲.顶管施工对相邻平行地下管线位移影响因素分析[J].岩土力学,2004(3):441-445.
[4]吴修锋.顶管施工引起的地层移动与变形控制研究[D].南京:南京工业大学,2004.
王兴义.顶管施工对既有区间隧道的影响研究[J].山西建筑,2021,47(09):140-141+159.
分享:
房屋建筑工程的绿色转型对改善居住、促进经济可持续发展至关重要,但传统施工方式引发的高能耗与污染问题阻碍了此进程。绿色节能施工技术应运而生,旨在降耗减排、提升效率与质量,涉及节能机械、环保材料等,正成为建筑企业可持续发展的关键。尽管政府支持推动了其应用,但技术成本与人员培训仍是挑战。
2024-11-20隧道支护技术作为隧道工程施工控制的重要措施,近年来在隧道工程进洞施工中得到了重点研究和广泛应用,支护施工的时机和支护各项参数的选择尤为重要。针对中风化、强风化泥质粉砂岩隧道而言,隧道围岩岩体的节理较发育,岩体发育较完整呈中厚构造,整体稳定性差,围岩强度较低,岩体的软化系数小、耐水性差,浸水容易软化崩解。
2024-11-01平陆运河是西部陆海新通道的骨干工程,始于西江干流西津库区南宁横州市平塘江口,跨沙坪河与钦江支流旧州江分水岭,经钦州市灵山县陆屋镇沿钦江干流南下进入北部湾钦州港海域,全长约135 km, 是一条通江达海的水运通道。平陆运河航道工程施工共分为15个标段,工程№.HD13标段位于钦州市城区,施工航道穿越多座城市桥梁且桥梁均需拆除重建。
2024-11-01河道堤防工程建设是保证生态平衡、形成稳定支撑的重要设施。在河道堤防工程中,砌石加筋挡土墙是一种常见的结构形式,能够有效提高土体的稳定性和抗滑能力,减少水土流失和滑坡等灾害。传统的挡土墙后土体回填水力冲填施工形式多为单向结构,水力冲填一般以点对点的结构展开施工,虽可以实现预期的施工效果,但缺乏稳定性与支撑性。
2024-10-17随着我国经济的迅速发展,交通基础设施的建设也得到迅猛发展,与此同时在我国江河湖面上修建的桥梁也随之增多,不可避免地需要在水中修建桥墩,而修筑桥墩则要在水中设置围堰等措施,为桥墩施工提供无水的作业场地。钢吊箱围堰是为承台、系梁施工而设计的临时阻水结构,其作用是通过吊箱围堰侧板和底板上的封底混凝土围水,为承台施工提供无水的施工环境。
2024-10-14近几年来,建设事业在全国和各地都起到了举足轻重的作用。由于房屋建筑与市政基础设施同属建筑业,其受诸多因素的制约,目前我国房屋建筑和市政基础设施工程的质量监督工作还面临着监督体系不完善、监督人员监督能力不足、管理模式比较单一等诸多问题,严重妨碍了房屋建筑和市政基础设施的建设与发展,也不利于建筑业的高层次发展和高质量运营。
2024-10-10基于强度折减法和正交试验设计,对高填方边坡平台稳定性的影响因素进行探究,采用极差分析法对各因素进行敏感性分析,结论如下:对高填方边坡平台稳定性有影响的4个因素影响程度依次为填筑坡角>填筑高度>平台填筑宽度>岩质边坡坡角。此外,通过定性分析和定量分析对高填方边坡的平台失稳破坏模式及发生失稳破坏的临界条件进行研究分析,结论如下:(1)发现沿土岩界面破坏的条件主要由平台填筑宽度和岩质边坡坡角确定,进一步比较发现,当平台宽度不大于20 m,且坡角在39°~45°时,坡体易沿土岩界面失稳破坏;(2
2024-08-24燃气是一种危险的能源,在使用过程中,由于管道质量问题可能引发泄漏,进而导致爆炸事故等。因此要重视控制燃气管道及设备工程施工质量,严格按照施工标准作业,在确保质量的基础上控制进度和成本。对此,需深入分析燃气管道及设备工程施工中不足,挖掘问题存在的原因,这样才能完善施工管理措施,解决好存在的问题。
2024-08-23沥青路面具有优越的服务性能和相对较低的成本,现已经被认可,并广泛应用。虽然沥青黏结剂的质量在沥青混合料中最多占7%,但对路面抵抗车辆荷载和环境影响有很大的贡献。沥青混合料的老化和随之而来的性能恶化是路面研究领域的关键问题。
2024-08-03在桥梁维修加固中,由于分离式立交桥的特殊性,顶升支座的更换需要同步进行,但分离式立交桥的顶升支座更换具有非常大的难度,为了确保整个施工过程的整体稳定性和安全性,必须针对分离式立交桥的顶升支座更换施工进行详细的研究和探讨。
2024-07-05人气:3520
人气:2990
人气:2653
人气:2079
人气:1641
我要评论
期刊名称:青岛理工大学学报
期刊人气:1470
主管单位:山东省教育厅
主办单位:青岛理工大学
出版地方:山东
专业分类:工业
国际刊号:1673-4602
国内刊号:37-1440/N
创刊时间:1980年
发行周期:双月刊
期刊开本:大16开
见刊时间:4-6个月
影响因子:0.498
影响因子:1.262
影响因子:1.091
影响因子:0.000
影响因子:1.081
400-069-1609
您的论文已提交,我们会尽快联系您,请耐心等待!
你的密码已发送到您的邮箱,请查看!