摘要:研究开发高端霍尔传感器,对我国航天航空事业的发展有着重要意义。基于此,本文从霍尔传感器的基本原理出发,针对航天航空领域存在的辐射粒子、电磁波、气温相差大等问题,通过对抗辐射、抗干扰和耐温3项关键技术的大力研究,提出了采用CMOS混合电路设计、气密性封装结构、磁平衡原理设计、高低温分选及双路检测技术等研究方法和思路,并据此设计了产品生产的技术路线和技术指标,以供参考。
传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器属于电子信息行业,涉及到国民经济和国防建设的各个领域,是衡量国家信息化程度的重要标志。
自从1879年美国物理学家EdwinHerbertHall发现霍尔效应以来,霍尔传感器被越来越多地应用于工业自动化、农业现代化、航天技术、军事工程、机器人技术、资源开发、海洋探测、环境监测、安全保卫、医疗诊断、交通运输、家用电器等领域,成为智能化系统必不可少的基础技术和装备核心。国内传感器技术较国外还有较大差距,瑞士LEM、德国VAC、美国MELEXIS、Honeywell等国外厂商占据大部分市场。为此,研究国产高端霍尔传感器,特别是航天航空国防建设方面的高性能传感器显得尤为迫切。
1、基本原理
霍尔传感器工作的理论是建立在带电粒子在磁场中运动所产生霍尔效应的基础上。霍尔效应是指当一载流体置于磁场中静止不动时,若此载流体中的电流方向与磁场方向不相同,则在此载流体中平行于由电流方向和磁场方向所组成的平面上将产生电势,此电势称为霍尔电势,此现象称为霍尔效应。在磁场不太强时,霍尔电势UH(mV)与电流强度I(mA)和磁感应强度B(kGs)成正比,即:UH=S·I×B,式中S为乘积灵敏度[mV/(kGs·mA)]。
霍尔电流传感器正是利用VH与B的线性关系,来测量导线电流的。通电导体在它周围必然产生磁场,根据安培环路定律,我们采用具有很高磁导率的软磁材料做成圆环(假定通电导体为圆柱体),并开以气隙,利用磁环对磁场加以聚集,则可以加大信号,提高信噪比。
2、主要研究内容
本项目霍尔高端传感器应用于航天航空和国防建设等领域,为航天工程、登月工程、飞机、船舰配套。航天航空应用环境与地面应用有较大差别,由于空间应用具有不可修复性,要求传感器必须具有很高的可靠性,我国高端霍尔传感器依赖进口。国内传感器技术水平低,产品种类少,许多产品仅用于一般工业用途,不能满足于航天科技高可靠性的使用环境要求,对辐射剂量比较高的射线无法遮挡,无法达到试验要求,由于工作温度窄,长距离传输容易受到干扰,不能适应航天航空耐高温、耐低温的复杂环境要求。因此,航天航空高端霍尔传感器研究必须把重点放在以下关键技术的突破与创新上。
2.1 霍尔电路抗辐射关键技术研究
在航天环境中,存在大量的辐射粒子,虽然粒子被卫星外壳阻挡,但穿透力极强的射线无法遮挡,故传感器必须采用抗辐照设计。
采用CMOS混合电路设计,包括霍尔元件和与之连接的调理电路。调理电路包括双差分放大电路、史密特触发电路、输出电路,霍尔元件感应外界磁场并输出电压信号,双差分放大电路输入霍尔电压并将放大后的电压信号输出至史密特触发电路,史密特触发电路将输入的电压信号由正弦信号转换为数字方波脉冲信号,并将转换后的数字方波脉冲信号通过输出电路输出。其中霍尔元件由砷化镓单晶材料经溅射工艺制造而成,双差分放大电路、史密特触发电路、釆输出电路均由用硅单晶材料、0.5μmCMOS扩散工艺制备的MOS管设计而成(图1)。
图1 锁定型霍尔集成电路磁电转换特性
采用气密性封装结构,将CMOS调理电路和霍尔原件以芯片形式封装于陶瓷安装槽中。包括一具有安装槽的陶瓷外壳、封装于所述安装槽内的霍尔元件和CMOS调理电路以及盖在安装槽的外边缘并用于气密性结构封装所述安装槽的镀金盖板,其中霍尔元件通过一金丝与陶瓷外壳连接,调理电路通过硅铝丝与陶瓷外壳连接,陶瓷外壳内部布设有印刷导线连接霍尔元件、CMOS调理电路和多个伸出陶瓷外壳之外的管脚,从而保证了霍尔混合集成电路气密性封装的实现,同时具备很好的高抗辐照性能。其抗辐照总剂量达100krad(1kGy),抗中子辐射达1×1014n/cm2(n指高能粒子数目),满足航天应用环境需求。
2.2 霍尔电路耐温关键技术研究
航天航空应用环境复杂多变,要求传感器环境适应性好,在高温或低温环境下能长时间工作,且不发生温度漂移。
将硅单晶体材料的电路芯片封装到一气密性封装结构中,设计成为高可靠的霍尔片式集成电路。采用温度补偿电路抵消掉磁场计算公式中与温度相关的参数影响,使磁场不随温度变化而变化。在版面设计时,采用硅平面双极型工艺,保证电路能够在180℃的高温环境下短时工作。霍尔电路芯片通过硅铝丝与陶瓷外壳连接,陶瓷外壳内部设有印刷导线连接4个伸出管脚,连接陶瓷外壳。采用无磁气密性封装结构,产品结构牢固、体积小、重量轻、寿命长,耐温可达-180℃~150℃,适应月球表面超高、低温环境,达到宇航级要求。
2.3 传感器耐温、抗干扰关键技术研究
霍尔电流传感器在空间应用时,周围有很多的大型电子设备,会产生各种各样的电磁波,要求传感器具有很高的电磁兼容性。传统频率的传感器工作温度范围窄(0~70℃),长距离传输容易受到干扰;在宽温区工作,温漂大,测量精度难以保证。因外部电磁干扰通过磁芯作用于霍尔元件,故本项目在磁芯设计时采用磁平衡对称结构,让外界干扰在磁芯中互相抵消。这种设计一般用于测量200A以下电流的传感器中。
采用0.35mm的坡莫合金冷冲成型,径向叠片,使磁路尽可能均匀,同时也避免在磁芯中产生旋涡。为实现温度补偿措施,减小产品温漂,选用失调小、灵敏度高的霍尔元件,或选用参数相接近的霍尔元件进行双霍尔设计,可以到达很好的温度性能。为提高抗外界磁干扰,选用剩磁导磁率高的坡莫合金制作屏蔽壳体,将磁芯与电源地相连接。采用上述方案设计的传感器,可以实现在-55~+125℃达到0.2%的精度,满足GJB151A—1997《军用设备和分系流电磁发射和敏感度要求》的要求,解决在复杂电磁环境和温度变化大等恶劣环境下达到高精度、高抗干扰测量的难题。
对于大电流(数百安培以上)测量的需要,基于霍尔直放式的工作原理,采用双霍尔元件补偿,将被测电流产生的磁场信号转换为电压信号,霍尔电压信号经放大、调整后即可得到与测量电流具有对应关系的电压信号。采用该原理的霍尔传感器具有封装尺寸小、测量范围广、重量轻、低电源损耗的优点。
例如HDC-XXX霍尔传感器,采用敏感元件高低温分选及双路检测技术,使温漂低至20×10-6/℃,在高温度(125+5)℃的情况下进行大电流测量(能够测量电流1500A),传感器性能正常。应用恒流源放大的电路,将2个霍尔传感器分别串联在一射极跟随电路构成的恒流源中;2个霍尔传感器的输出弱信号接差分放大器电路,差分放大器电路接反相放大电路输出;射极跟随电路对霍尔元件进行供电,可以保证在高温环境中,有效控制霍尔原件的温漂(图2)。
图2 HDC-200EJ霍尔大电流传感器工作曲线图
3、生产方案
3.1 产品工作原理
霍尔集成电路把稳压器、霍尔元件、差分放大器、施密特触发器和集电极开路输出集成到同一单晶片,实现将变化的磁信号转换成数字电压输出(图3)。
图3 HDC-1500KJ耐高温型霍尔电流传感器工作曲线图
根据霍尔效应原理,霍尔元件的2个输出端将输出1个电压值,称为霍尔电压VH,这个电压经差分放大器放大后作为施密特触发器的触发信号。磁场的极性每变换一次,电路的输出就完成一次开关转换,这就是霍尔开关集成电路工作的原理(图4)。
图4 霍尔集成电路的功能方框图
3.2 技术路线
3.2.1 结构设计
传统霍尔集成电路的外形尺寸为6.0mm×4.5mm×1.7mm。近几年,用户对霍尔集成电路的外形尺寸要求越来越高,为了满足用户对产品体积的要求,产品的外形尺寸设计与进口SS400系列外形尺寸相似,达到4.5mm×3.6mm×1.7mm,只有传统霍尔集成电路尺寸的60%。霍尔集成电路体积缩小后,对气密性,封装要求,抗30000gn恒定加速度试验,抗振动、冲击等机械性能的要求均相应地有所提高。因此,在电路外壳强度设计、芯片的剪切力、键合强度等方面均需要对工艺进行控制,以满足设计要求。
3.2.2 CMOS电路设计
电路磁场参数的中心值和一致性主要通过电路设计和版图设计来保证,包括以下几种方法:
①采用恒压偏置模式提高芯片与芯片之间磁场参数的一致性;②提高电路稳压模块的性能,使得稳压电路的精度从3%提高到1%,改进施密特触发器,使其磁滞更为精确;③将运算放大器的失调电压从3mV降低为1mV;④对版图进行优化设计,使得产品的键合区由3个(电源、地和输出)变成4个(多1个备份点),保证产品在工艺过程的开口应力相同;⑤由4个霍尔元件组成霍尔元件阵列,放置在整个电路版图的正中央,减小应力和温度对霍尔元件参数的影响。
3.2.3 可靠性研究
在霍尔集成电路设计阶段,通过防静电设计、耐高温设计、高耐压设计和辐照加固设计等方面对器件的线路和版图进行优化设计,提高产品的参数指标。在生产阶段对霍尔集成电路工艺进行控制,对封装工艺进行攻关,保证产品密封性,减少内部多余物的产生,控制产品内部气氛,提高产品质量。最终,使霍尔集成电路可靠性达到航天航空用户的要求。成品出厂筛选阶段,按照GJB548B—2005《微电子器件试验方法和程序》方法,通过对产品进行150℃下的电老炼试验,剔除早期失效的产品,并通过抽样可靠性试验对霍尔集成电路的可靠性水平进行评估。技术路线如图5所示。
图5 生产工艺流程图
3.3 主要技术指标
技术指标按照ISO9001质量管理体系和GJB9001国家军用标准质量管理体系执行,产品通过美国UL认证和欧盟CE认证。主要技术与产品性能指标、执行的质量和环保标准,通过的国家有关许可认证、质量认证、环境认证如表1所示。
表1 产品主要技术指标
4、主要产品
高性能霍尔传感器包括霍尔集成电路和开关型、锁定型、线性型、小回差等传感器。具有结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHz),耐震,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀特点,可满足多种环境条件下的应用要求。
参考文献:
[1]何希才.传感器及应用电路[M].北京:北京电子工业出版社,2001.
[2]董辉.汽车用传感器[M].北京:北京理工大学出版社,2001.
[3]单成祥.传感器的理论与设计基础及其应用[M].北京:国防工业出版社,1999.
[4]黄德星,等.磁敏感器件及其应用[M].北京:北京科技出版社,1987.
李萍,罗云.高端霍尔传感器关键技术的研究[J].天津科技,2020,47(1):20-23.
分享:
机电伺服系统在航空航天领域的应用越来越广泛[1-2],机电作动器是机电伺服系统的执行机构,相比传统的液压作动器,机电作动器具有更高效、集成度更高、更易维护的特点。随着航空机电伺服系统的发展,永磁同步电机因其具有高效率、高功率密度、高控制精度等优点,成为其中的重要组成部分[3-4]。
2024-12-18在飞机运营过程中,椅盆在疲劳载荷下极易产生疲劳裂纹甚至断裂故障,严重时会危及飞机应急着陆情况下乘员乘坐安全,且额外增加了航空座椅售后维护成本。上述关于航空坐垫性能的研究主要集中在动态冲击、振动方面,关于航空坐垫疲劳性能的研究较少,而航空坐垫的疲劳性能直接影响坐垫使用寿命及飞机维护计划。
2024-12-11飞机外表面成品件大多采用沉头螺栓连接,沉头螺栓组装后的质量将会影响飞机外表面的平整度,对飞机外形气动性有较大影响。沉头螺栓头部高度尺寸是保证沉头螺栓组装质量的重要因素。目前沉头螺栓头部高度尺寸检测方法存在效率低、误差大、无法判断批次产品的尺寸一致性等问题。
2024-12-11微型涡喷发动机作为一种高能量密度的动力推进装置,具有结构紧凑、体积小、转速高等特点,被广泛应用在国防和民用领域。因其广阔的应用前景和价值,一直备受国内外科研工作者的关注,是航空发动机领域不可或缺的一部分。随着近年来微机电技术(MEMS)的飞速发展,国内外对微型涡喷发动机的研究也日益深入。
2024-12-11“十四五”期间,随着我国经济进入高质量发展阶段,我国的航空物流业处于大有可为的重要战略机遇期[1],城乡居民对品质化、精细化、个性化的航空货运服务需求日益增长,跨境电商、快递、冷链生鲜等行业将蓬勃发展,这些都预示着航空货运业即将迎来快速发展时期。
2024-12-10随着智能制造和工业4.0的深入研究和推广应用,制造业不断出现调整生产流程、优化管理结构、降低生产成本的新框架和新方法,各制造企业也面临着采用数字化技术、发展智能化生产的挑战。数字化设计制造技术是实现智能制造和工业4.0的基础,是现代及未来高端产品研发不可或缺的支撑技术。
2024-12-04多电飞机是未来飞行器发展的重要方向,而多电航空发动机(More Electric Engine,MEE)的性能直接决定了飞机的整体性能[1]。多电发动机的核心部件主要有:磁悬浮轴承系统、内置式整体起动/发电机、电驱动燃油泵、分布式控制系统[2],其中前两者一般都直接安装在高压转子上,对转子运行有直接影响。
2024-12-03在航天器的热致振动分析方面,马远骋等[3-4]总结概括了国内外热致振动研究进展。目前大多数学者研究都采用有限元法进行分析,有限元法是一种基于微分方程离散化的方法,最初应用于结构力学的分析,后逐渐应用于流体力学与传热学的分析。有限元法将结构划分为有限数量的小单元,通过求解单元间的关系来解决整个结构的热传导问题。
2024-12-03由于机场运行环节相互关联,场面资源非常有限,繁忙时段如果机场管制协调不及时便会影响整体运行效率,导致与计划相偏离的延误。机场运行管理技术的更新一定程度上可以缓解机场内部运输的拥挤状况,其中航班离场推出时隙是机场管理的重要内容之一,合理分配推出时隙可以减少航班延误,提高整体运行效益。
2024-11-13飞机液压系统是飞机运行中最重要的系统之一,主要以液体为工作介质,靠液体压力驱动执行机构完成特定操纵动作来控制操纵舵面和作动筒等,直接关系着飞行过程中飞机系统设备的正常工作及飞行安全。一旦发生故障,后果将会很严重,对飞机的损伤很大,甚至会危害到机组的安全。
2024-11-13我要评论
期刊名称:航空科学技术
期刊人气:2235
主管单位:中国航空工业集团有限公司
主办单位:中国航空研究院
出版地方:北京
专业分类:航空
国际刊号:1007-5453
国内刊号:11-3089/V
邮发代号:2-691
创刊时间:1989年
发行周期:月刊
期刊开本:大16开
见刊时间:7-9个月
影响因子:0.645
影响因子:1.494
影响因子:1.025
影响因子:0.000
影响因子:0.000
400-069-1609
您的论文已提交,我们会尽快联系您,请耐心等待!
你的密码已发送到您的邮箱,请查看!