
摘要:硬X射线成像是研究太阳耀斑等爆发现象的重要手段.由于采用调制成像而非直接成像的原因,X射线图像在日面上的位置需要借助太阳指向镜提供的仪器指向的日面坐标来确定.因此,指向信息对于耀斑定位实现多波段研究,理解太阳耀斑的物理过程具有重要的科学意义.在此对两种太阳指向镜指向信息的获取算法进行了测试.结合太阳指向镜的设计方案,首先利用SDO(SolarDynamicsObservatory)/AIA(AtmosphericImagingAssembly)4500Å的数据产生测试图像,其次对其进行二值化处理,分别提取日面轮廓和4个边角指定区域面积;最后分别利用最小二乘法和四象限法对太阳中心坐标进行反演.初步结果显示最小二乘法受随机噪声影响小,定位精度相对稳定约为0.25′′,并可提供四象限法解算的初值;后者的精度可以优于0.14′′,但受随机噪声影响较大.两种算法的精度都显著优于硬X射线成像仪(HardX-rayImager,HXI)太阳指向镜的设计要求,可为指向数据在将来科学分析中的实际应用提供参考.
1、引言
先进天基太阳天文台(AdvancedSpace-basedSolarObservatory,ASO-S)是中国首颗太阳专用观测卫星[1],硬X射线成像仪(HardX-rayImager,HXI)作为其3台载荷之一主要负责在30–200keV能段对耀斑源区进行成像、能谱和光变观测,以研究耀斑磁重联中的能量释放和高能电子加速等物理过程[2].由于在该能段上仅能看到耀斑区域,而无法获得全日面像,因此无法获知源区在日面上的位置.因此太阳指向镜作为HXI的组成部分,可实现对太阳中心位置的精确测量,提供指向中心坐标,并结合平台的旋转指向,以便对耀斑X射线源进行定位[2].指向镜的本质在于使用CCD(Charge-coupledDevice)/CMOS(ComplementaryMetalOxideSemiconductor)探测器对太阳进行可见光成像,再将得到的太阳光斑像近似为圆形,进而对圆的中心和半径参数进行计算.太阳在可见光的辐射主要来自光球,其边缘附近的辐射强度随日心角距增加变化非常陡峭,形成锐利的太阳边缘[3],这有利于提取太阳像的圆形轮廓特征.
HXI太阳指向镜的原理与太阳导行镜[4,5]相似(但无需反馈环节),都需计算日面中心在探测器视场中的坐标位置,或者相对偏移量.而太阳望远镜的导行模式主要经过了点、线、面的发展过程[6,7,8].在20世纪90年代以前多采用以太阳边缘对称的4个点来导行跟踪的四象限探测器法,如早期的怀柔多通道望远镜[6];到80年代以后线阵探测器技术逐渐完善,德国GCT[9](GregoryCoud´eTelescope)、日本Yohkoh[10]和美国RHESSI[11,12](ReuvenRamatyHighEnergySolarSpectroscopicImager)均采用此方法.特别需要指出的是,正是由于RHESSI对指向(日面边缘)的高精度测量,为了解太阳的实际形状提供了最精确的结果[13].而今随着计算机处理能力的提高,面阵探测器得到广泛使用,如SOHO[14](SolarandHeliosphericObservatory).面阵探测器的优点在于能够获取更多太阳的信息以及利用图像处理技术,更精确地反演日面中心位置.例如文献[7]提到的全日面像相关算法和质心算法,测试显示其在x和y方向检测精度的均方差分别约为0.0271′′和0.0101′′与0.1142′′和0.0828′′.
根据设计要求(来自《先进天基太阳天文台卫星(ASO-S)硬X射线成像仪初样设计报告》,2019年,文件编号KX-07-HXI00-JB-04),HXI太阳指向镜中心位置的测量精度要优于2′′.由于定位精度越高,越有利于多波段的数据分析,因此我们在本文中设定测试目标精度为1′′.由于数据量、采样率等方面的要求和限制条件,我们无法下传所有的图像.为了节省在轨计算资源和减少传输的数据量,提出了四象限法和边缘拟合法两种独立又可以结合的测量方法.为此,CMOS探测器每次曝光完成后,太阳指向镜将对图像进行在轨二值化处理,再采集两种数据下传,分别是14行数据和4个边角的面积,而中心坐标的计算在地面完成.其中,指向镜在轨记录的14行像元值用于获得太阳边缘,再利用最小二乘法进行拟合,得到太阳中心参数.而CMOS4个正方形边角区域记录的像元值为1的数量,用于四象限法的计算.本文中,我们利用MATLAB软件和SDO [15]4500˚ALevel1.0的数据主要针对算法本身进行了测试和评估.
2、太阳指向镜测量原理
太阳指向镜的镜头部分安装在HXI载荷准直器框架的前基板上,焦距f≈1200mm[2].当HXI对太阳观测时,太阳光斑成像如图1所示.其中,正方形ABCD为尺寸2048×2048pixel的CMOS探测器,太阳光斑像的尺寸与CMOS的尺寸相当,如红色圆所示.然而地球绕日公转轨道为椭圆,近日点为1.471×108km、远日点为1.521×108km[3],且太阳半径为696342km[16].因此,太阳视直径随地球绕日公转轨道变化最大为32.55′,最小为31.48′,这会导致在CMOS上的成像随之变化.再考虑到HXI指向镜光轴相对于平台指向的最大偏差(约为142pixel)等因素,对应在CMOS上成像光斑的边缘被限制在绿色和黄色圆之间,对应的半径分别为Rmax=1174.6pixel和Rmin=857.1pixel.平行于x轴的14条红色虚线与太阳像边缘的交点作为边缘拟合法的数据点.4个边角上正方形的边长被选为L=445pixel,从而保证太阳像无论如何移动(在设计安装误差范围内),太阳边缘都与4个区域的内边长有两个交点.正方形阴影区被二值化并分别求和后,理论上对应于图1中深色区域的面积S1、S2、S3、S4,以此作为四象限法解算的基础.
图1太阳指向镜算法原理图.正方形ABCD为2048×2048pixelCMOS探测器,红色圆为太阳像光斑,绿色圆和黄色圆之间为仪器允许的光斑边缘移动的区域.其中,在H(≈278pixel)范围内选取了5行数据;其他各符号的定义见2.2节.
2.1 最小二乘法
最小二乘法(LeastSquareMethod,LSM)是用于曲线拟合最常用的方法,拟合过程快速简便,且拟合精度相对较高.文献[17]中利用最小二乘圆拟合法对激光光斑轮廓进行拟合,从而定出了其中心坐标和半径.该方法同样可以用于指向镜成像的日面边缘拟合.设太阳像光斑的中心坐标为(x0,y0),半径为r0,则满足的圆方程为:
设(xi,yi)为从太阳像光斑边缘提取的第i个坐标点,将其代入(1)式并取残差为:
再求残差平方和函数:
根据最小二乘原理,有:
最后,解出满足(4)式的方程组,可以得到圆的中心坐标和半径参数[17]:
其中,,m、n为整数,N为参与拟合的坐标点的数量.
2.2 四象限法
此处的方法同传统四象限法不同,但由于算法本身的特征仍然称之为四象限法(FourQuadrantMethod,FQM),其原理如图1所示.太阳光斑像(红色圆面)分别与CMOS探测器4个角的正方形阴影区域相交,对应的面积记为S1、S2、S3、S4,而该面积又可由红色圆的参数:圆心坐标O(x0,y0)和半径r0决定.以面积S1的计算为例,其面积等于扇形OA1B1的面积减去三角形OP1A1和OP1B1的面积,即
基于此,且以CMOS探测器阵列的顶点A为坐标原点,向右和向下为正方向,建立直角坐标系,则4个阴影区域的面积S1、S2、S3、S4满足
其中,带有下标的θ、h、a、b为中间参量,分别表示扇形对应的圆心角、三角形的高和底边长度.而面积S1、S2、S3、S4分别对应下面4组关系:
再将各中间参量的表达式(7)式分别代入面积S1、S2、S3、S4对应的表达式(6)式中,则可以得到以太阳中心位置(x0,y0)和半径r0为参数的方程组(8)式,即太阳的中心位置由面积S1、S2、S3、S4可以定出.
在解算时,S1、S2、S3、S4为CMOS探测器测量的已知量,由于方程组含有4个方程和3个未知数,且是含有反三角函数的复杂方程,所以考虑利用MATLAB的fsolve1函数进行数值求解.fsolve可用于求解非线性方程组,需要给定初值,求解时可使用边缘拟合法得到的(x0,y0,r0)作为数值求解的初值.此外,可以考虑两种做法:FQM1,将(8)式和已知的面积S1、S2、S3、S4开方后再数值求解;FQM2,考虑降低噪声的情况,将(8)式按如下方式改写构成新的方程组:(S1+S2)-(S3+S4),(S1+S3)-(S2+S4),S1-S4,S2-S3.
3、算法实现与误差评估
3.1 数据来源与测试方法
(1)由于指向镜数据来自太阳可见光,为使测试尽量接近真实情况,选择了SDO/AIA4500˚ALevel1.0的光球数据,该数据没有作despike2处理.此外4500˚A的数据尺寸大小为4096×4096pixel,可以使用imresize函数将其缩放到2048×2048pixel.若在缩放前先进行裁剪,则可以控制生成的太阳像半径大小r0;
(2)为了评定指向镜算法的精度,首先直接读取fits文件为2维数组像元亮度值(DigitaNumber,DN),经裁剪和缩放作为第1张AIA图像(日面中心在图像中心附近),并计算其日面中心为(X0,Y0).其次对图像沿x和y方向平移(δx,δy)以产生大量测试图像,其理论中心为(XT,YT)=(X0+δx,Y0+δy).其中δx、δy从-150pixel到150pixel按3pixel等间隔选取,且满足,即指向镜光轴相对于平台指向的最大偏差条件;
(3)另一方面,通过算法计算出测试图像的日面中心坐标(X,Y),再用计算得到的坐标与理论坐标相减得到x和y方向的误差(X-XT,Y-YT),则算法的误差可以表示为[6]
此外,一般认为图像是由一个个方格状的像素单元组成,方格的数量与像素的数量对应.为了反映这种认知,可以将CMOS图像的坐标原点(即A点)改为(0.5,0.5)pixel.于是对于2048×2048pixel的CMOS探测器,其中心在(1024.5,1024.5)pixel,故在解算后需要对原中心坐标作+0.5的修正;
(4)根据太阳在CMOS探测器上成像光斑大小的可能变化,最小直径为1997.8pixel,最大直径为2065.7pixel,故设置了8组不同半径大小的AIA图像进行测试,r0分别约为:998、1004、1009、1014、1019、1024、1029、1035pixel.此外考虑了图像二值化时的阈值和噪声影响,噪声是在图像二值化之后添加的.关于添加噪声,首先随机产生2048×2048的只含有0和1的二值化矩阵.其中1表示噪点,其数量与0和1总数量的比值p定义为噪声比例.然后再将噪声矩阵与二值化后的AIA图像做“或”逻辑运算,得到具有一定噪声水平p的测试图像.
3.2 测试结果与分析
为了探索随机噪声对指向镜算法精度的影响,图2中给出了四象限法的两种解法FQM1和FQM2以及LSM的误差随噪声的变化规律.其中横坐标的噪声比例在0%–1%间等间距取10个点,在2%–5%间等间距取4个点.图中每一个噪声比例下对应的蓝色*点来自821张偏移测试图像.这些测试图像从-150pixel到150pixel按9pixel等间隔产生且满足指向镜光轴最大偏差条件.这些误差点总体上对误差的上限有一个限制.而紫红色的线条是测试图像在约70pixel固定偏移下,其平均误差随噪声比例的变化曲线.这说明随着噪声的增加,FQM算法的误差呈增大趋势.此外,图3也给出了FQM和LSM的误差随噪声比例和图像偏移量的分布图.
图2不同比例随机噪声下的指向镜算法误差(阈值=1500DN,r0=1014pixel).每个噪声比例下的蓝色*点来自于821张测试图像,紫红色线条是偏移约为70pixel测试图像的平均误差曲线.(a)和(b)中的子图是满足误差小于1pixel(红色直线以下)的局部放大图.
由图2可知,FQM1和FQM2满足误差小于1pixel的噪声比例分别约为0.1%和0.85%(对于偏移量为70pixel的图像,FQM能忍受的噪声上限分别约为0.4%和1.6%).而LSM的误差随噪声的变化相对稳定且小于0.4pixel.此外,由图2(a)的子图可知FQM1的误差是随噪声逐渐增加的,在大约小于0.02%的噪声水平时,此方法的精度优于FQM2和LSM.而LSM对噪声的适应性以及精度总体上好于FQM,故后面的测试主要基于FQM1和LSM,当然3种计算方法可以用来相互验证.
图3FQM和LSM的误差随噪声比例和图像偏移量的分布图,对应于图2的结果.
基于图2和图3的初步分析,接着做了更细致的测试.图4给出了对边缘拟合法和四象限法在固定阈值、随机阈值和附加随机噪声情况下的6种测试结果.其中横坐标为8组不同半径r0测试图像的统一编号,大约56000张.纵坐标为算法误差∆T的浮动范围.表1也给出了相应误差的统计结果,包括均方根(RootMeanSquare,RMS)、平均值、极值以及99.5%分位值.
图4太阳指向镜算法在不同条件下的误差分布:(a)和(b)为固定阈值1500DN,(c)和(d)在1200-1900DN之间随机取阈值,(e)和(f)除了随机阈值外再附加0.05%的随机噪声.
表1太阳指向镜算法的误差评估:LSM和FQM1
结合图4和表1可知,在固定阈值下四象限法的误差最小,误差为0.05′′以内的数据占99.5%,最大误差不超过0.06′′,优于边缘拟合法的结果.在单独考虑随机阈值以及再附加0.01%的随机噪声情况下,FQM1的各项指标依然优于LSM.当对测试图像添加0.05%的噪声时,FQM1的极值误差接近0.8′′,相对于LSM增加更为显著.添加随机噪声后的图4(f)的误差分布相对于无噪声的图4(d)变化更明显.不过根据图4(f),极值误差与太阳像的半径和偏移量有关系,故误差的评估也需要借助其他统计量,如RMS误差为0.23′′.由于四象限法的精度取决于CMOS上太阳像经二值化后4个边角的面积可以预计随着噪声的继续增加,FQM对面积的分辨变差会导致误差增大,这也与图2(a)和(b)的结果相符.而对于LSM,比较图4(a)、(c)和(e)可知,其误差波动都比较随机均匀,再结合表1中LSM的统计结果,有无噪声相差不大;也符合图2(c)的预期.
图5选取了图4(e)和(f)中半径r0=1014pixel的数据点,画出了LSM和FQM1的误差随图像偏移量的分布.其中横、纵坐标分别为沿x和y方向的图像偏移量,左图为边缘拟合法,其误差分布相对均匀.右图为四象限法,根据色值可知通常在太阳图像的偏移量较小的时候其误差较小.该结果也可与图2和图3的分析相互印证.
图5太阳指向镜算法误差随图像偏移量的分布.对应图4(e)和4(f)中r0=1014pixel的测试数据.
4、总结与讨论
我们针对HXI的耀斑源区定位需求以及HXI太阳镜指向精度优于2′′的设计要求,在查阅和借鉴太阳导行镜相关资料的基础上,对两种基础算法,即最小二乘法和四象限法的测量精度及其受噪点水平的影响进行了测试.测试时利用了SDO/AIA4500˚A的Leve1.0数据.
总体而言,边缘拟合法和四象限法的精度(在0.05%噪声下RMS误差分别约为0.11′′和0.23′′)均优于2′′的设计要求和1′′的测试目标,且可提供独立测量结果,用于交叉验证四象限法依赖于4个角的面积对太阳中心坐标的约束,所以其精度对面积的变化比较敏感.前面提到的两种解法,FQM1可以达到最高精度时的噪声容忍约为0.02%,FQM2虽然能够容忍约0.85%的噪声,但是精度总体不如LSM好.而边缘拟合法的定位精度虽然相对略低,但是由于该算法是基于拟合太阳像的边缘点数据,其所选取的14行像素相对于总的2048行像素而言,在概率上能保证具有较强的抗随机噪声能力.
但需要指出的是HXI太阳指向镜在轨提取太阳图像时,将无法对原始数据作复杂的矫正处理,故在二值化后如果还存在较多噪点,则边缘拟合法会更适合作为指向镜算法就测试使用的SDO/AIA4500˚ALevel1.0数据而言,四象限法的FQM1解法在低噪声时的指向精度更高.但Level1.0数据是Level0数据经过一定处理得到的,当前测试中,我们尚未考虑这两种数据的具体差异,所以测试会有局限性,特别是对于四象限算法.在本文所得结果的基础上,我们将进一步优化算法,如采用穷举矩阵方法以及改进四象限法方程组的求解方法等,以改进太阳中心位置的测量精度.
参考文献:
[3]林元章.太阳物理导论.北京:科学出版社,2000:269-271
[4]温卫斌,李怀峰,孙才红,等.光电工程,2005,32:1
[5]陈炳龙,方禹鑫,邓雷,等.天文学报,2020,61:32
[6]胡柯良.面阵CCD导行和嵌入式系统在高时空分辨率太阳磁场观测中的应用研究.北京:中国科学院国家天文台,2004:9-25
[7]邓林华.一米红外太阳望远镜光电导行系统的研究.昆明:中国科学院研究生院(云南天文台),2009
[8]郭晶晶,杨云飞,冯松,等.科学通报,2016,61:1112
[17]孔兵,王昭,谭玉山.红外与激光工程,2002,31:275
喻福,苏杨,张哲,黄宇.ASO-S/HXI太阳指向镜算法研究[J].天文学报,2020,61(04):79-89.
基金:国家自然科学基金项目(U1631242、U1731241、11820101002、11427803);中国科学院空间科学战略性先导科技专项(XDA15320300、XDA15320104、XDA15052200);江苏双创计划资助.
分享:
先进天基太阳天文台(AdvancedSpace-basedSolarObservatory,ASO-S)是中国首颗太阳专用观测卫星[1],硬X射线成像仪(HardX-rayImager,HXI)作为其3台载荷之一主要负责在30–200keV能段对耀斑源区进行成像、能谱和光变观测,以研究耀斑磁重联中的能量释放和高能电子加速等物理过程[2].
2020-08-27太阳黑子是产生于太阳表面的,容易被观测的太阳活动现象,其所在的太阳区域有强磁场的聚集。对太阳黑子的观测和分析对于人类理解和研究太阳活动具有重大意义,如帮助天文学者研究耀斑的爆发与黑子群的相关性[1]。随着太阳物理学以及观测设备的发展[2,3],人们对于太阳黑子观测产生的数据量呈爆发式增长趋势。
2020-08-27莱曼阿尔法太阳望远镜(LST)[1,2,3]是先进天基太阳天文台(ASO-S)[4,5]卫星的3个有效载荷之一,它由白光太阳望远镜(WST)、全日面成像仪(SDI)、日冕仪(SCI)和导星镜(GT)组成[2,6].SDI和WST的视场为1.2倍太阳半径,SDI的工作波段为莱曼阿尔法波段(121.6±7.5nm),WST的工作波段为紫外窄带连续谱(360±2.0nm)[2,6].
2020-08-27太阳是太阳系的中心,也是距离我们最近的一颗恒星,它孕育了地球的万物.太阳耀斑和日冕物质抛射(CME)是太阳大气乃至整个行星际空间能量释放最为剧烈的两类爆发现象,蕴含着丰富的物理过程[1,2,3,4].太阳磁场是引起太阳活动的一个根本原因,是太阳上各种活动现象的能量来源.对于它们的研究,既能加深人们对太阳的认识和理解,又能帮助人们理解宇宙中其他恒星上发生的类似现象[5,6].
2020-08-2719世纪50年代,Bobcock父子利用机械扫描的方法,将狭缝光谱仪测量的线源(一维)目标的磁场通过机械扫描获得日面二维磁图,该磁图具备多波长、非实时的特点(光谱型磁像仪).到了70年代发明了视频磁像仪,从而能够获得某一波长的实时二维磁图(滤光器型磁像仪)[1].我国太阳磁场的观测研究始于上世纪80年代,中国科学院国家天文台怀柔太阳观测基地研制的35cm太阳磁场望远镜[2]、60cm多通道望远镜[3]以及全日面太阳望远镜[4]均进行太阳磁场的观测,都属于滤光器型磁像仪.
2020-08-27公元 4943 年,X 国科学家预测一颗来自太阳系外的未标明巨行星将在 20 年后撞击地球。这个消息一经传出,马上就如洪水猛兽般触动着每一个人的神经,如滚雪球般在极短的时间内席卷了整个地球。各个国家暂时抛弃了私怨,组成联合政府,商讨如何解决这个关系人类未来的重大问题。
2020-07-14太阳系是我们的家园,也是我们探索宇宙的第一站。在认识宇宙的漫长历程中,从史前人类到 2000 多年前的古希腊先哲,再到 17 世纪的开普勒、牛顿等科学巨匠,我们对宇宙的几乎所有探索都集中在太阳系的日月行星等天体上。直到 18 世纪早期,人们才真正开始关注太阳系以外的诸如恒星等天体。
2020-07-14美国一直在默默搞自己的核火箭计划。美国宇航局很早就认识到,如果要把探索目标定在更深远的太阳系,核推进可能是唯一可行的技术选择。即使探测范围仅仅超越火星轨道,太阳能电池板所能提供的电力就已经不够了,而采用化学推进将需要大量的推进剂或超长的行程时间,新视野号冥王星探测器就是个明显的例子。
2020-07-14太阳轨道器运行的位置,是整个太阳系里环境最恶劣的地方之一。虽然最后确定的轨道比最初设计要离太阳远一点,但在最近的地方,太阳轨道器距离太阳也只有 4200 万公里。这个数字看上去挺大的,但只有地球到太阳距离的 1/4。想想夏日正午的阳光是什么样的?而且地球外面还有厚厚的大气层。实际上,这个距离比金星到太阳还近。
2020-07-14地球所处的太阳系并不平静。小行星带、柯伊伯带和奥尔特云中存在大量不稳定的碎片,它们是太阳系制造行星时留下的碎屑。据推测,最终成为车里雅宾斯克陨石的流星可能形成于约3万年前小行星带中的一次强烈碰撞。柯伊伯带位于海王星轨道之外。奥尔特云是包围太阳系的一圈云状陨石圈,也是艾桑彗星的故乡。
2020-07-14人气:7409
人气:6202
人气:4541
人气:3238
人气:2630
我要评论
期刊名称:天文学报
期刊人气:1780
主管单位:中国科学院
主办单位:中国天文学会
出版地方:江苏
专业分类:科学
国际刊号:0001-5245
国内刊号:32-1113/P
邮发代号:2-818
创刊时间:1953年
发行周期:双月刊
期刊开本:16开
见刊时间:一年半以上
影响因子:0.000
影响因子:0.435
影响因子:0.406
影响因子:0.746
400-069-1609
您的论文已提交,我们会尽快联系您,请耐心等待!
你的密码已发送到您的邮箱,请查看!